Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 8298, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221234

RESUMO

The Earth's crust is exceptionally important to understand the geological evolution of our planet and to access natural resources as minerals, critical raw materials, geothermal energy, water, hydrocarbons, etc.. However, in many regions of the world it is still poorly modelled and understood. Here we present the latest advance on three-dimensional modelling of the Mediterranean Sea crust based on freely available global gravity and magnetic field models. The proposed model, based on the inversion of gravity and magnetic field anomalies constrained by available a-priori information (such as interpreted seismic profiles, previous studies, etc.), provides, with an unprecedented spatial resolution of 15 km, the depths of the main modelled geological horizons (Plio-Quaternary, Messinian and Pre-Messinian sediments, crystalline crust and upper mantle), coherent with the known available constraints, together with the three-dimensional distribution of density and magnetic susceptibility. The inversion is carried out by means of a Bayesian algorithm, which allows to modify at the same time the geometries and the three dimensional distributions of density and magnetic susceptibility, always respecting the constraints introduced by the initial information. In addition to unveil the structure of the crust beneath the Mediterranean Sea, the present study also shows the informative content of freely available global gravity and magnetic models, thus putting the base for the development of future high resolution models of the Earth crust at global level.

3.
J Geophys Res Planets ; 124(6): 1542-1569, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35096494

RESUMO

While devoid of an active magnetic field today, Mars possesses a remanent magnetic field which may reach several thousand nT locally. The exact origin, and the events which have shaped the crustal magnetization remain largely enigmatic. Three magnetic field datasets from two spacecraft collected over 13 cumulative years have sampled the martian magnetic field over a range of altitudes from 90 km up to 6000 km: a- Mars Global Surveyor (MGS) magnetometer (1997-2006); b- MGS Electron Reflectometer (1999-2006); c- MAVEN magnetometer (2014-today). In this paper we combine these complementary datasets for the first time to build a new model of the martian internal magnetic field. This new model improves upon previous ones in several aspects: comprehensive data coverage; refined data selection scheme; modified modeling scheme; discrete-to-continuous transformation of the model; increased model resolution. The new model has a spatial resolution of ~ 160 km at the surface, corresponding to spherical harmonic degree 134. It shows small scales and well defined features, which can now be associated with geological signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...